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6. ORTHONORMALITY  
 

§6.1. Orthogonality 
Theorem 1: Let ,  be irreducible representations of the 

finite group G over ℂ on the vector spaces U, V 

respectively and let :U→V be a linear transformation. 

Then 


−=
Gx

xx )()( 1  is a ℂG-module homomorphism: 

U → V. 

Proof: Let g  G. Then 


−=
Gx

xxgg )())(()( 1




− ==
Gh

gghh )())(()( 1  ,  putting h = gx. So if u  U, 

(ug) = (u)g. Extend by linearity. ☺ 

 

Theorem 2: If ,  are inequivalent irreducible 

representations over ℂ and :U→V is linear then: 




−

Gg

gg )()( 1 = 0. 

If  =  then it is 






|G|.tr 

deg 
 I . 

Proof: By Schur’s Lemma, 0)()( 1 =


−

Gg

gg   if ,  are 

inequivalent, and 

                                                                     I, for some 

, if  = . 
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In the latter case 




−



− ==
GgGg

ggtrggtr ])()[()()(deg. 11    trGtr
Gg

.==


. 

☺ 

 

Theorem 3: If  and  are irreducible matrix 

representations of G, over ℂ, of degrees m, n respectively, 

then for all i, j, s, t: 


gG

 (g)ij(g
−1)st = 





0 if  and  are inequivalent

0 if  =  and either i  t or j  s 

|G|

deg 
 if  =  and i = t and j = s

  

Proof: 
gG

(g)ij(g
−1)st  is the i-t component of 


gG

(g)Ejs(g
−1)  where Ejs is the m  n matrix with 1 in 

the j-s position and 0’s elsewhere. ☺ 

 

§6.2. Orthogonality of Characters 
Theorem 4: The irreducible characters of G over ℂ form 

an orthonormal basis for CF(G). 

Proof: Let  and  be characters corresponding to the 

irreducible representations above. 

Then if  and  are inequivalent: 

       = = =


−



−



   
1 1 11 1
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g g
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i
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jg G

( )( ) ( ) ( )  

= =−




1

01

G
g gii jj

g Gi j

( ) ( )
,

  . 
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Let  be the character corresponding to the irreducible 

representation  of degree n. Thus: 

= 


− ==
ji Gg

jjii gg
G ,

1 )()(
1

 


− ==
i Gg

iiii gg
G

)()(
1 1

=
i

G

G deg

1  1. 

 

Theorem 5: If ij is the i-j entry in the character table for 

G then: 

h Gk
k

ik jk ij =    and       


ki kj

ij

ik h
G= . 

Proof: The first follows from above. Hence 






ij

hj

  is a 

Hermitian matrix and hence so is its transpose. ☺ 

 

Theorem 6: Every normal subgroup is the intersection of 

the kernels of irreducible representations that contain it. 

Proof: By orthogonality the intersection of the kernels of 

irreducible representations is 1. 

If H is a normal subgroup of G the irreducible 

representations of G/H induce irreducible representations 

of G. The kernels that contain H are of the form K/H 

where K is a kernel for G. Thus the intersection of such 

kernels is H. 

 

It follows that the normal subgroups of G are recoverable 

from its character table, since g  ker if and only if g = 

deg. ☺ 
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Theorem 7: The intersection of the kernels of the linear 

representations is G. 

Proof: If  is linear, G/ker is abelian so G  ker. 

An irreducible representation  of G induces an 

irreducible representation of G/ker. 

If G  ker then G/ker is abelian so  is linear. ☺ 

Corollary: The number of linear characters of G is |G/G|. 

 

Theorem 8: If  is the character of an irreducible 

representation of G then deg divides |G/Z(G)|. 
Proof: Case I:  faithful. 

Right multiplication by an element of Z(G) permutes the 

conjugacy classes. 

Define 1, 2 to be equivalent if 1z = 2 for some z  

Z(G). 

Suppose z =  for some 1  z  Z(G). 

Then z = I for some   1 and  = (z) = . 

whence  = 0. 

Hence 


= ..G  

Terms where  is equivalent to fewer than |Z(G)| classes 

are 0. 

So 


= ..)(/ GZG  where the sum is over a set of 

representative classes. 

Now for each , ||./deg  ℤ*. 

So |G/Z(G)|/deg  ℤ*  ℚ = ℤ. 
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Case II: K = ker > 1. 

deg divides |(G/K)/Z(G/K)| = |(G/K)/(Y/K)| = |G/Y| 

which divides |G/Z(G)| where 

Y/K = Z(G/K)) and Z(G)K  Y. ☺ 

 

§6.3. Groups of Order paqb 
Theorem 9: Let  be a representation of G of degree n 

with character . Suppose g  G has h conjugates where 

GCD(h, n) = 1. Then either g = 0 or g  Z(G). 

Proof: For some r, s  ℤ, 1 = rh + sn so 

g

n
 = r







h(g)

n
 + s(g)   ℤ*. 

Let g have order N and let   = e2i/N. 

Then g is a sum n powers of  and so 






g

n
  1. 

The image of 
g

n
 under any automorphism of ℚ[] will 

have the same minimum polynomial over ℚ as 
g

n
 itself 

and so will be an algebraic integer. 

Thus taking the product over all automorphisms, , of 

ℚ[], 






(g)

n
   ℤ*. 

By Galois Theory (g)  ℚ and so 






(g)

n
   ℚ  

ℤ* = ℤ. 
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Suppose g  Z(G). Then 






g

n
 < 1, because if 







g

n
 = 1, 

all the eigenvalues of g are equal and so g is a scalar 

linear transformation in which case it lies in Z(G). 

Hence 






(g)

n
 < 1 and, being a non-negative integer, it 

is zero, ☺ 

 

Theorem 10: Groups of order paqb are soluble (where p, 

q are primes). 

Proof: Let G be a minimal counter-example. That is, |G| 

= paqb but G is not soluble, but all smaller groups are 

soluble. Clearly G is a non-abelian simple group and so 

Z(G) = 1 for any non-trivial irreducible representation . 

 

Let P be a Sylow p-subgroup and let 1 ≠ g  Z(P). 

Then P  CG(g) and so the number of conjugates of g in 

G is a multiple of q. 

Let A be the set of irreducible characters of G whose 

degree is a multiple of q and let B be the set of non-trivial 

characters of G whose degree is coprime to q. 

If  is the regular character of G then: 

0 = g = 


 ))((deg g = 




++
BA

gg


 ))((deg))((deg1  

                                      = 


+
A

g


 ))((deg1  = 1 + qz for 

some z  Z*. 
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Hence − 
1

q
  ℚ  ℤ* = ℤ, a contradiction. 

 

 A Hall subgroup of G is a subgroup H such that 

the order of H is coprime to its index. If  is any set of 

primes a Hall -subgroup is one where the prime divisors 

of |H| all lie in . Hall subgroups are a generalisation of 

Sylow subgroups. However, while Sylow p-subgroups 

exist for all primes p, a Hall -subgroup may not exist for 

some set of primes . For example A5 has no Hall -

subgroup if  = {3, 5}, that is, no subgroup of order 15. 

 

Theorem 11: A finite group is soluble if and only if it has 

a Hall -subgroup for every set of primes .  

 

 Theorem 10 follows easily from Theorem 11, but 

in fact requires Theorem 10 in its proof. So this is yet 

another theorem of finite group theory that needs 

representation theory in its proof. 
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